Safety for Beginners with Jon Newstrom, KL7GT

Safety is everyone's responsibility!

Course Introduction

- Safety is an attitude which is gained through knowledge and best practices.
- Safety is Everyone's responsibility!
- Who/What are we trying to make "safe"?
 - Our family, friends, the general public, ourselves AND our equipment.
- This course will be for beginners; we will get through the basics. Then we'll have an advanced discussion only if we have time.

Introduce Yourself

- Name,
- Call Sign,
- What Bands do you work (HF, VHF or Higher) and where (Handheld, Portable (> handheld), Mobile, Home, Field)
- What do you want to learn here?
- Do you have a current First Aid/CPR/AED card?
- Do you have your license?

Bucket List

- This course will use the inverted pyramid style starting broad and then going to details.
- We will have a bucket list, as a topic comes up in the broader discussion, we might wait to get into the details.
- The white board will be the collection point.
- Take your own notes on topics without slides
- You can get the whole slide deck from the website in a few days.

Starting Point: my hand held

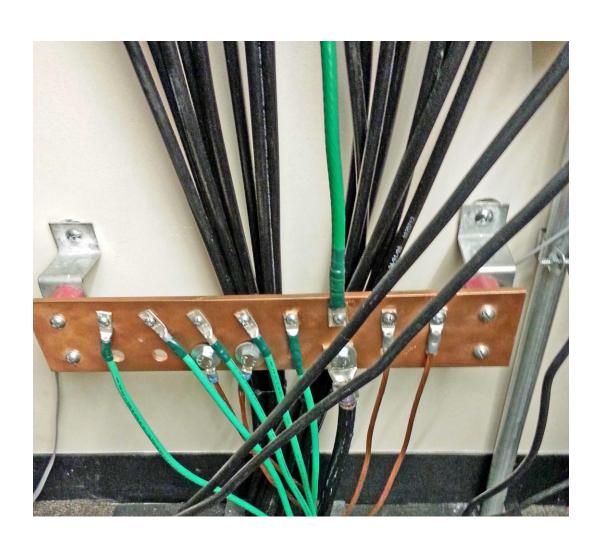
What are the hazards of using this radio?

Hazards of this HT

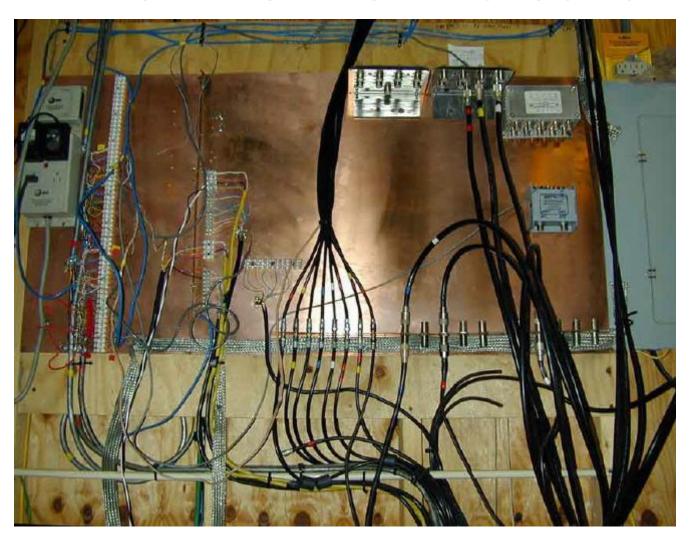
- Poke someone's (yours?) eye out.
- RF exposure (use speaker mic/headset)
- Operating in a dangerous place (RF field)
- Distraction (focused on listening and talking and not situationally aware).
- Overcharge/drain the battery
- Lightening rod?

The five basic safety concerns/conditions

- Grounding
- Lightning
- Electrical
- RF Exposure
- Field work field day, emergency, public service.
- Bonus (if we have time): Safety and ICS


Other safety concerns if time allows

- Physical Layout (trip, fall, or injury hazards)
- Antennas
- Towers
 - Rigging (guy lines strong enough?)
 - Engineering (wind load, base, antenna mounting)
 - Set Up (climbing)
 - PPE (Personal Protection Equipment)
 - Ground
 - Lightning
 - Lighting? Marking?
- Food and Water
- Shelter
- First Aid


Grounding - Electrical or "safety ground"

- Required by code ties to the neutral at one point.
- It's good practice to have "one and only one ground" (Common Point Ground) - what does that mean? [Coax and Power Cord]
- Everything all your equipment should have a three-pronged plug. There are exceptions – battery chargers, some computers, land-line telephones.
- The safety ground is connected to the chassis of your equipment, and protects you if somehow a "hot" line connects to it.
- The concept of "balanced" POTS
- RF Ground it's tricky and advanced touched on later
 - IF you have a tower, the tower's ground and your shack's ground should be connected together with buried copper strap.
 - If you are building or doing concrete work consider an Ufer Ground.

Common Point Ground

Common Point Ground

• Where is this? What is there?

Lightning Ground – A very advanced topic.

- Good news there is a LOT of information out there
- Bad news there is a LOT of information out there
- Scary news lightning will grab ANYTHING to find ground
- Really scary news lightning is FAST AND POWERFUL
- With ground(s) SHORT and WIDE is what you want
- If you are pouring concrete look at an Ufer ground.

- Complete this sentence:
- "Electricity follows the path of _______"

- Complete this sentence:
- "Electricity follows the path of least resistance."
- Parallel Resistance

- Practical discussion
 - Handheld
 - Mobile (capacitive coupling to the ground)
 - Base Station single point ground panel
 - Antennas/towers
 - Some antennas need a ground
 - Towers, mostly, are grounded
 - » Run ground wires/straps straight no kinks no sharp turns
 - » Good radials buried 6 to 18" below grade
 - 8 or more radials (4 if desperate)
 - Grounding rods along radials at intervals twice the length of the ground rod.
 - If you are pouring a concrete base consider Ufer ground.
 - Telephone lines POTS (Plain Old Telephone Service) are balanced and NOT grounded, use special lightning arrestor.
 - Speaking of lightening arrestors. . .

Wide copper straps – VERY straight (no kinks)

RF Ground

Eye Radio 98.6 Mhz Juba, Sudan

Electrical

- Power lines and towers/antennas
- Extension cords/Power Strips
 - Daisy chains
 - Mixed circuits (mixed ground?)
- Wire gauge the right wire for the right current
- How to know how much power things take?
 - Look in the manual
 - Add up the fuses
 - Use Ohm's law P=I*E
 - Remember duty cycle

Electrical

- Surges and how to protect your station
 - Power strip with "surge protection" = junk
 - UPS, typically, won't protect you from fast surges
 - Power Conditioners \$\$\$\$ and ### and worth it!
- Don't mix circuits
 - Example: Generator on the transceiver, "city" power on Power Amplifier
 - Example: Your shack has two separate circuit breakers for its outlets.
- Good Practices
 - Never work on anything "hot" think before stripping wires
 - Plug in the power cord last
 - Unplug equipment (and put the plug in sight) before you work on it (sleeper circuits)
 - With High voltage (especially DC) one hand behind your back
 - Remember what capacitors do store energy
 - Electrical "lock-outs"

Electrical lockouts

- Remember this is a beginner's class
- That means beware of over-simplification.
- It also means there are a lot of opinions out there, and this course will give a general opinion.
- Safety is your responsibility, and you have to decide what is safe!

- The Inverse Square Law is your friend. Power is attenuated (reduced) in an inverse square of the distance.
- Operate at the lowest possible power.
- Don't look into a wave guide or directive antenna used for UHF/SHF
- Don't operate transmitters or amplifiers with the cover off. Don't work around or on antennas when any of them are in use. Use lockouts if possible.

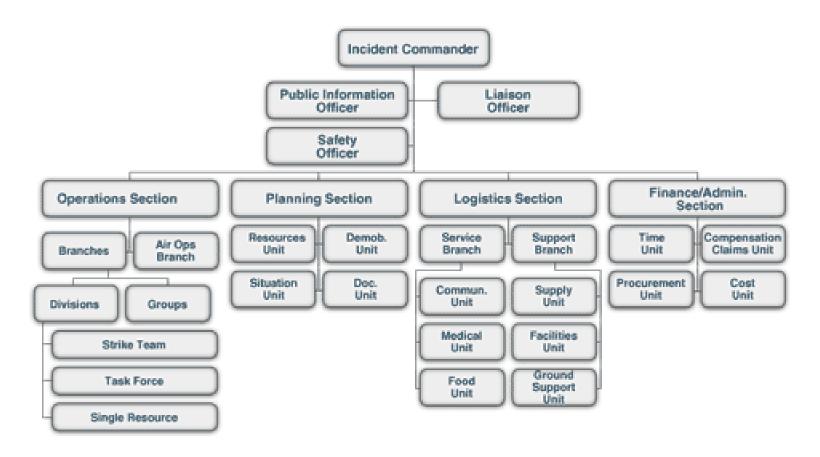
- IF you are close to these power levels (<u>at the</u> antenna) THEN do the math (see links)
 - 160 to 40 meters 500 Watts PEP
 - 20 meters 225 Watts PEP
 - 15 meters 100 Watts PEP
 - 10 to 1.25 meters 50 Watts PEP
 - 70 cm 70 Watts PEP
- Beyond this point there be MATH

 http://www.arrl.org/files/file/Technology/tis/i nfo/pdf/rfex1 2.pdf

Field Operations

- All of the safety concerns we have discussed apply to field operations as well. Some risks will increase.
 - Neatness becomes even more important
 - Increased likelihood of the General Public will also be at risk
 - Why does this matter? We chose to be hams, they didn't
 - Electrical could easily become tricky
 - More than one generator?
 - Alternative power such as solar/wind/batteries
 - Grounding
 - Generators, towers, operating positions all need to be properly grounded
 - RF Safety
 - Multiple stations operating means accumulation of RF exposure.
 - Antennas deployed much lower (less height) than at "home", and potentially more dangerous. Public too close.

Field Operations


- Lightning
- Food Safety
- Trip and similar hazards
 - Power, coax, network cables
 - Guy lines
 - Antennas with eye-level elements (poking hazard)
- Untrained or distracted "helpers"
- Generators
 - Fuel Storage and refueling procedures
 - Grounding
 - Access to (block it off)
- PPE (Personal Protection Equipment
 - Gloves, Shoes, Hardhat?
 - Vests, goggles
 - Good ladders (OSHA Stickers)

Safety under ICS

- Brief explanation of the Incident Command System/Structure.
 - Safety Briefing
 - "Put on your own mask before assisting others"
 - Role of the Safety Officer under ICS
 - SO is an advocate for Safety, and has the IC's ear!
 - Safety is everyone's responsibility

Safety under ICS

Incident Command Organizational Chart

Bucket List

- What do YOU want to discuss in more depth?
- Ground
- Lightning Ground
- Electrical
- RF
- Field Operations
- Incident Command Safety
- First Aid

Resources

- General
- ARRL's "home" page on safety
- http://www.arrl.org/safety

•

- Electrical
- From the ARRL antenna book
- http://www.arrl.org/files/file/Technology/tis/info/pdf/AntBk.pdf
- General ARRL page on electrical safety
- http://www.arrl.org/electrical-safety

•

- Grounding
- http://www.arrl.org/grounding

•

- About Ufer grounds
- http://en.wikipedia.org/wiki/Ufer_ground

Resources

- Lightning
- ARRL's lightning safety pagehttp://www.arrl.org/lightning-protection
- Three good articles on lightning safety
- http://www.arrl.org/files/file/Technology/tis/info/pdf/0206056.pdf
- http://www.arrl.org/files/file/Technology/tis/info/pdf/0207048.pdf
- http://www.arrl.org/files/file/Technology/tis/info/pdf/0208053.pdf
- RF Safety
- RF safety evaluation and exemption worksheets:
- http://www.arrl.org/files/file/Technology/tis/info/pdf/rfex1_2.pdf
- How to evaluate a Ham Station:
- http://www.arrl.org/files/file/Technology/tis/info/pdf/CH5references.pdf
- Safety in the field:
- Nice article walking through field day RF safety
- http://www.arrl.org/files/file/Technology/tis/info/pdf/9906048.pdf